Exploiting the Generation Gap*

Steven K. Heller
December 30, 1987

Abstract

This paper presents several ways of optimizing a
lifetime based garbage collector by exploiting the
disparate natures of different regions. Ephemeral
regions are small, contain a high percentage of gar-
bage, and must be collected frequently and effi-
ciently. Dynamic regions are large, contain rela-
tively little garbage, and require infrequent collec-
tion. We customize optimizations for each region.

1 Introduction

Lisp Systems and other object oriented systems em-
ploy garbage collection [2] to recycle the space oc-
cupied by inaccessible objects. Lifetime based gar-
bage collecting [6] and its implementations [7, 10,
3, 5, 8] are recent and leave room for optimization.

By organizing objects according to creation time, a
lifetime based garbage collector can concentrate on
young objects, those most likely to be garbage. The
core of a lifetime based garbage collector involves
tracking references from objects in older regions to
objects in newer regions. Some schemes [7, 5, §]
track the references, some schemes [10] track the
objects referred to, and some schemes [6, 3] break
the references with an indirection.

Objects exist in three kinds of regions. Ephemeral
regions are the youngest and smallest. Dynamic re-
gions, the next oldest, are large and still subject to
collection. A static region is considered the oldest;
it is large but not subject to collection. There may

*This paper describes research done at the Laboratory for
Computer Science of the Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139. Funding for the Laboratory is
provided in part by the Advanced Research Projects Agency
of the Department of Defense under the Office of Naval Re-
search contract N0O0014-84-K-0099.

be several ephemeral levels and several dynamic
levels. Upon surviving a collection, objects can be
promoted from one level to the next, through the
ephemeral levels, the dynamic levels, and eventu-
ally to the static area. We assume that ephemeral
objects are always promoted upon survival. The
next section discusses custom made garbage collec-
tion strategies for individual regions.

2 Vive la Différence

As pointed out in [6], different regions can have dif-
ferent collection strategies. We present a few ideas
for collecting ephemeral regions, and an idea for
collecting dynamic regions.

2.1 Copying Order Bows to Speed

Since objects are being copied, the collector should
attempt to optimize the placement of objects to im-
prove locality, or so says the lore. Locallity is im-
portant in both virtual memory systems and real
memory plus cache systems. Moon’s collector [7]
uses pages as the blocking unit. But ephemeral ob-
Jjects never get paged out. If there is more than
one ephemeral level, the copying order makes no
difference at all, and the fastest one is best. The
exception is the last ephemeral level, which pro-
motes objects to dynamic status; it may be worth
a bit of complexity at that point to improve local-
ity. By simplifying the collection of the youngest
ephemeral level, we can speed up our inner loop,
and thereby the efficiency of our garbage collector
as a whole.




2.2 Rates of Collection

The collection rates of the ephemeral levels can be
set individually in much the same way that Baker
controlled collection using the Baker parameter,
k. [1] Suppose there are two ephemeral levels. The
newest level can be collected to keep up with new
object allocation, and the second level can be col-
lected to keep up with survival from the first level.
Evacuation traps, which prematurely evacuate ob-
Jects, can be accounted for, slowing the collection
rate even more. In this way collection can be spread
out and delayed as much as possible, allowing bet-
ter interactive response time, as well as more time
for objects to die. A little complexity is cost effec-
tive in any but the first ephemeral level. In older
ephemeral levels, for example, we can collect in-
formation concerning the dynamic behavior of the
mutator. [3]

2.3 Cascading Leaves Spots

Before collecting the second ephemeral region, some
collectors force the premature collection of the first
ephemeral region. This collects inter-ephemeral-
region garbage cycles, but has the unfortunate side
effect of the double promotion of newly created ob-
Jects. Collecting both regions in parallel, which
takes more space, is an attractive alternative that
gives new objects more time to die on their own
while retaining the ability to collect the aforemen-
tioned cycles.

2.4 Old Objects Hang On

We should consider collecting dynamic regions us-
ing strategies other than copying, ones that take
more time and less space. Dynamic regions contain
a small fraction of garbage, and as a result require
infrequent collection. Perhaps it’s time for mark
and sweep to emerge from the closet. The acces-
sible fraction of the heap in older regions is likely
to be high, so the size of the area that needs to be
swept is not much larger than the size of the acces-
sible area. Previously, mark-and-sweep strategies
were dismissed in large address spaces due to the
prohibitive overhead of sweeping. In this domain,
however, they should be reconsidered. Several vari-
eties of interleaved mark-and-sweep collectors have
been developed [4, 9]. This is an interesting twist
that has clear potential.

REFERENCES

3 Conclusion

Virtual memory is an engineering combination of
fast main memory and cheap secondary memory
that approximates the speed of the former at the
cost of the latter. Lifetime based garbage collection
provides a similar multilevel scheme. Each level has
its own characteristics, and is individually available
for tailor-made optimizations.

References

[1] Henry G. Baker. List Processing in Real Time
on a Serial Computer. Communications of the
ACM, 21(4):280-294, April 1978.

[2] Jacques Cohen. Garbage Collection of Linked
Data Structures. ACM Computing Surveys,
13(3):341-367, September 1981.

[3] Bob Courts. Obtaining Locallity of Reference
in a Garbage-Collecting Memory Management
System. November 1987. Internal TI Memo.

[4] Edsger W. Dijkstra, Leslie Lamport, A. J.
Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-Fly Garbage Collection: An Exercise
in Cooperation. Communications of the ACM,
21(11):966-975, November 1978.

[5] Richard Greenblatt. Greenblatt’s Scheme for
the LMI Lambda. December 1987. Personal
Communication.

[6] Henry Lieberman and Carl Hewitt. A Real-
Time Garbage Collector Based on the Life-

times of Objects. Communications of the
ACM, 26(6):419-429, June 1983.

[7] David A. Moon. Garbage Collection in a Large
Lisp System. In Symposium on Lisp and Func-
tional Languages, ACM, August 1984.

[8] Patrick G. Sobalvarro. Sobalvarro’s Scheme for
Lucid Common Lisp. December 1987. Personal
Communication.

[9] Guy L. Steele. Multiprocessing Compactifying
Garbage Collection. Communications of the
ACM, 18(9):495-508, September 1975.

[10] David Ungar. Genaration Scavenging: A Non-
disruptive High Performance Storage Recla-
mation Algorithm. In Practical Program-
ming Environments Conference, pages 157—
167, April 1984.




